УТВЕРЖДЕНО
РНОГО СОВЕТА ИФФВТ

1 1 2 2 3 3 протокол № 9
Просседите может подписи (Рыбин В.В.)

1 20 2 2 3 г. протокол подписи)

1 2023 г. протокол № 9

1 2023 г. протокол № 9

2 30» июня 2023 г.

РАБОЧАЯ ПРОГРАММА

Дисциплина	СПЕЦИАЛЬНЫЙ ФИЗИЧЕСКИЙ ПРАКТИКУМ
Факультет	Инженерно-физический факультет высоких технологий
Кафедра	Радиофизики и электроники (РФЭ)
Курс	1,2

Направление 03.04.02 «Физика» (магистратура)

(код направления, полное наименование)

Направленность (профиль	/специализация) <u> Физика п</u>	олупроводников.	. Микроэлектрог	ника
` 1 1	полное наименовани	= =	-	

Форма обучения: очная

Дата введения в учебный процесс УлГУ: «__01___»___сентября_____2023 г. Программа актуализирована на заседании кафедры: протокол №_____ от ____20____г. Программа актуализирована на заседании кафедры: протокол №____ от ____20____г. Программа актуализирована на заседании кафедры: протокол №____ от ____20____г.

Сведения о разработчиках:

ФИО	Аббревиатура	Должность,
ΨHO	кафедры	ученая степень, звание
Санников Дмитрий Германович	РФЭ	Профессор, д.фм.н., доцент

СОГЛАСОВАНО			
Заведующий выпускающей кафедрой РФЭ			
// Гурин Н.Т. / Подпись ФИО « 23 » июня 2023 г.			

Форма А стр. 1 из 12

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

<u> Цель освоения дисциплины</u> – практическое знакомство с физическими основами работы волоконно-оптических линий связи (ВОЛС) и радиофизических систем, использующихся в современной квантовой электронике и оптоэлектронике

Задача преподавания дисциплины:

- сформировать у студента навыки работы с элементами интегрально- и волоконнооптических устройств управления лазерным излучением в ВОЛС, а также радиотехническими компонентами (усилитель, детектор, преобразователь частоты, генератор, модулятор и т.д.).
- освоение экспериментальных методик измерения характеристик лазерных и светодиодных излучателей, а также пассивных компонентов ВОЛС.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Специальный физический практикум» Б1.О.01 относится к дисциплинам базовой части базового блока основной профессиональной образовательной программы (ОПОП) по направлению 03.04.02 – «Физика». Курс осваивается в течение двух семестров (2-й и 3-й) магистратуры.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Перечень формируемых компетенций в процессе освоения материала по дисциплине (модулю) с указанием кода и наименования компетенций, соотнесенных с установленными разработчиком РПД индикаторами достижения каждой компетенции отдельно в соответствии с ФГОС ВПО, ФГОС ВО.

Код компетенци и	Наименование компетенции	Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с
n		индикаторами
		достижения компетенций
ОПК-1	Способен применять	Знать основные разделы и законы
	фундаментальные	фундаментальной
	знания в области физики для решения	физики для решения научно-
	научно-	исследовательских задач
	исследовательских	Уметь решать физические задачи,
	задач, а также владеть основами педагогики,	фундаментальные знания физики.
	необходимыми для	применяя
	осуществления	Владеть фундаментальными знаниями в
	преподавательской	области
	деятельности;	физики и основами педагогики,
		необходимыми для
		преподавания физики
ОПК-3	Способен применять	Знать основные программные продукты и

Форма А стр. 2 из 12

		1
l	знания в области	ресурсы информационно-
l	информационных	телекоммуникационной сети "Интернет" для
1	технологий, использовать	решения задач профессиональной
	современные	деятельности
l	компьютерные сети,	Уметь осуществлять тематический поиск
	программные продукты и ресурсы	необходимой информации в сети "Интернет"
	информационно-	для решения задач профессиональной
l	телекоммуникационно	деятельности, в том числе находящихся за
	й сети "Интернет" (далее - сеть	пределами профильной подготовки
	"Интернет") для	Владеть навыками работы в области
l	решения задач	информационных технологий, использовать
l	профессиональной	современные компьютерные сети,
	деятельности, в том числе	программные продукты и ресурсы
	находящихся за пределами профильной	
	подготовки;	
ПК-1	способность	Знать: отечественные и международные
l	самостоятельно ставить	достижения в области физики
l	конкретные научно- исследовательские	полупроводников и микроэлектроники.
l	задачи в области	Уметь: ставить задачи научных
l	физики и решать их с	исследований, применять современные
ı	помощью современных	численные методы.
l	информационных	Владеть: навыками теоретической и
l	технологий и методов.	экспериментальной работы с учетом
l		
		современных информационных.

4. ОБЩАЯ ТРУДОЕМКОСТЬ ДИСЦИПЛИНЫ

- 4.1. Объем дисциплины в зачетных единицах (всего) 7 ЗЕ.
- 4.2. Объем дисциплины по видам учебной работы (в часах): 252

Drywy r wyrobyroù pobomy r	Респольсов	Семестры		
Виды учебной работы	Всего часов	2	3	
Общая трудоемкость	252/252	108	144	
дисциплины	232/232	100	144	
Аудиторные занятия	60/60	24/24	36/36	
Лекции				
Практические занятия (ПЗ)				
Лабораторные работы (ЛР)	60/60	24/24	36/36	
Самостоятельная работа (СР)	156/156	84/84	72/72	
Форма текущего контроля		Курсовая	Курсовая	
знаний и контроля		работа,	работа,	

Форма А стр. 3 из 12

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

самостоятельной работы: тестирование, контр. работа, коллоквиум, реферат и др. (не менее 2 видов)		отчет	отчет
Контроль	36/36		36/36
Вид итогового контроля	зачет / экзамен	зачет	экзамен

• В случае необходимости использования в учебном процессе частично/исключительно дистанционных образовательных технологий в таблице через слеш указывается количество часов работы ППС с обучающимися для проведения занятий в дистанционном формате с применением электронного обучения

4.3. Содержание дисциплины (модуля). Распределение часов по темам и видам учебной работы:

Предусмотрены занятия по подгруппам

No	Раздел дисциплины	ЛР	СР	Контрол
п/п	71 11 1			Ь
1.	Ватт-амперные характеристики ЛД и СИД	6	14	4
2.	Поляризационные характеристики ЛД и СИД	6	16	4
3.	Качественный анализ модовой структуры волоконных	6	14	4
	световодов. Исследование степени когерентности ЛД			
4.	Числовая апертура волоконных световодов	6	16	4
5.	Исследование влияния поперечных и продольных	6	14	4
	смещений торцов световода на затухание, вносимое			
	их соединением			
6.	Исследование характеристик пассивных элементов	6	22	4
	оптического линейного тракта			
7.	Исследование характеристик ЛД и фотоприемника	6	14	4
8.	Импульсная модуляция ЛД	6	16	4
9.	Моделирование формы сигнала на приемном конце	6	14	2
	реальной оптической линии связи			
10.	Аналоговая модуляция ЛД	6	16	2
	ИТОГО	60	156	36

5. Содержание разделов дисциплины

Раздел I.

Тема № 1. Ватт-амперные характеристики лазерного (ЛД) и светоизлучающего (СИД) диодов. <u>Цель работы:</u>

- экспериментальное измерение ватт-амперных характеристик лазерного диода (ЛД) и светоизлучающего диода (СИД);
- экспериментальное определение тока накачки, соответствующего началу генерации оптического излучения и порогового тока ЛД;
- сравнение ватт-амперных характеристик ЛД и СИД.

Тема№2. Поляризационные характеристики ЛД и СИД.

<u>Цель работы:</u>

Форма А стр. 4 из 12

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

- экспериментальное измерение зависимости поляризации ЛД и СИД от тока накачки; **Тема№3.** Качественный анализ модовой структуры волоконных световодов. Исследование степени когерентности ЛД.

Цель работы:

- изучить зависимость степени когерентности излучения ЛД от тока накачки по анализу распределения интенсивности в поперечном сечении волоконных световодов, возбуждаемых ЛД;
- определить причину появления модовых шумов в волоконно-оптической линии связи;
- исследовать модовый состав волоконных световодов по распределению интенсивности в их поперечном сечении.

Тема№4. Числовая апертура волоконных световодов.

Цель работы:

- произвести экспериментальное определение числовой апертуры одно- и многомодового световодов.

Раздел II

Тема № 1. Исследование затухания из-за продольно-поперечных смещений торцов оптических световодов при их стыковке.

<u>Цель работы:</u>

у исследование зависимости переходного ослабления, вызванного поперечными и продольными смещениями торцов многомодовых и одномодовых световодов.

Тема №2. Изучение затухания в оптических розетках и аттенюаторах при соединении волоконных световодов

<u>Цель работы:</u>

- определение затухания при соединении двух волоконных световодов в оптической розетке в зависимости от величины их числовой апертуры;
- **у** измерение затухания, вносимого постоянным и переменным аттенюаторами на основе оптической розетки для много- и одномодовых волоконных световодов;
- > градуировка переменного аттенюатора и получение навыков работы с измерителем оптической мощности «Алмаз 21».

Тема №3. Измерения оптических и электрических характеристик лазерного диода и фотоприемника. <u>Цель работы:</u>

- получение навыков практического использования измерителя оптической мощности;
- > измерение ватт-амперной характеристики лазерного диода с помощью измерителя оптической мощности «Алмаз-21»;
- исследование зависимости тока фотодиода от уровня оптической мощности, на его чувствительной площадке;
- исследование зависимости тока фотодиода от напряжения смещения;
- **у** исследование зависимость спектральной чувствительности фотодиода от напряжения смещения.

Тема №4. Исследование процессов импульсной модуляции лазерного диода.

Цель работы:

- исследование процесса модуляции интенсивности лазерного диода и влияния на форму оптического сигнала положения рабочей точки на ватт-амперной характеристике;
- исследование зависимости коэффициента модуляции интенсивности лазерного диода от положения рабочей точки на ватт-амперной характеристике;
- **у** исследование зависимости коэффициента модуляции интенсивности лазерного диода от напряжения смещения фотодиода.

Тема №5. Моделирование формы сигнала на приемном конце реальной оптической линии связи. <u>Цель работы:</u>

Форма А стр. 5 из 12

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

- **р** расчет реальных параметров оптического сигнала по заданным характеристикам линии связи;
- **у** моделирование на лабораторной установке формы реального сигнала в линии на основании проведенных расчетов.

Тема №6. Исследование процесса аналоговой модуляции лазерного диода.

<u>Цель работы:</u>

- исследование процесса модуляции интенсивности лазерного диода и влияния на форму оптического сигнала положения рабочей точки на ватт-амперной характеристике;
- **у** исследование зависимости коэффициента модуляции интенсивности лазерного диода от положения рабочей точки на ватт-амперной характеристике.

6. ТЕМЫ ПРАКТИЧЕСКИХ И СЕМИНАРСКИХ ЗАНЯТИЙ

Данный вид работы не предусмотрен учебным планом.

7. ЛАБОРАТОРНЫЕ РАБОТЫ (ЛАБОРАТОРНЫЙ ПРАКТИКУМ)

Раздел I. Источники излучения и волоконные световоды.

- №I.1. «Ватт-амперные характеристики лазерного и светоизлучающего диодов».
- №I.2. «Поляризационные характеристики лазерного диода (ЛД) и светоизлучающего диода (СИД)».
- №1.3. «Анализ модовой структуры волоконных световодов».
- №I.4. «Исследование степени когерентности лазерного диода».
- №1.5. «Экспериментальное определение числовой апертуры волоконных световодов».

Раздел II. Характеристики элементов волоконно-оптических линий связи.

- № II.1. «Исследование затухания из-за продольно-поперечных смещений торцов оптических световодов при их стыковке».
- № II.2. «Изучение затухания в оптических розетках и аттенюаторах при соединении волоконных световодов».
- № II.3. «Измерения оптических и электрических характеристик лазерного диода и фотоприемника».
- № II.4. «Исследование процессов импульсной модуляции лазерного диода».
- № II.5. «Моделирование формы сигнала на приемном конце реальной оптической линии связи».
- № II.6. «Исследование процессов аналоговой модуляции лазерного диода».
- № II.7. «Исследование потерь на изгибах оптоволокон с помощью скремблера».

8. ТЕМАТИКА КУРСОВЫХ, КОНТРОЛЬНЫХ РАБОТ, РЕФЕРАТОВ

Контроль (в виде курсовых работ во 2, 3 семестрах) осуществляется научными руководителями, курсовые работы защищаются магистрантами на кафедре в соответствии со сроками УП.

9. ПЕРЕЧЕНЬ ВОПРОСОВ К ЭКЗАМЕНУ

Вопросы к зачету

- 1. Ватт-амперные характеристики лазерного (ЛД) и светоизлучающего (СИД) диодов
- 2. Поляризационные характеристики лазерного диода (ЛД) и светоизлучающего диода (СИД).
 - 3. Анализ модовой структуры волоконных световодов
 - 4. Исследование степени когерентности лазерного диода.

Форма А стр. 6 из 12

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

- 5. Экспериментальное определение числовой апертуры волоконных световодов.
- 6. Исследование затухания из-за продольно-поперечных смещений торцов оптических световодов при их стыковке.
- 7. Изучение затухания в оптических розетках и аттенюаторах при соединении волоконных световодов.
- 8. Измерения оптических и электрических характеристик лазерного диода и фотоприемника.
 - 9. Исследование процессов импульсной модуляции лазерного диода.
- 10. Моделирование формы сигнала на приемном конце реальной оптической линии связи.
 - 11. Исследование процессов аналоговой модуляции лазерного диода.
 - 12. Исследование потерь на изгибах оптоволокон с помощью скремблера

Экзаменационные вопросы

- 1. Энергетическая диаграмма полупроводника. Рисунок и объяснение с точки зрения физики твёрдого тела.
- 2. Что такое уровень Ферми в полупроводниках (определение, рисунок, пояснения)?
- 3. Получите соотношение между длиной волны (в мкм) и энергией (в электрон-вольтах), довести до численного значения.
- 4. Перечислите основные телекоммуникационные длины волн (соответствующие окнам прозрачности волоконного световода), на которых работают современные волоконно-оптические линии связи. Перечислите полупроводники, используемые для обеспечения генерации в этих окнах прозрачности.
- 5. Генерация и рекомбинация носителей (примеры).
- 6. Несмещенный и смещенный p-n переходы, их зонные диаграммы (рисунок и пояснения).
- 7. Инжекция и экстракция носителей в p-n переходе, их роль при генерации света.
- 8. Что такое ток накачки полупроводникового излучателя?
- 9. Области применения одномодовых и многомодовых оптических волокон.
- 10. Что такое спонтанное и вынужденное излучение?
- 11. Дайте определение светоизлучающего диода (СИД). Какова типичная ширина спектра его излучения? Почему сформированное с помощью СИД излучение является некогерентным и неполяризованным?
- 12. Что такое ватт-амперная характеристика полупроводникового источника, и каковы требования к её виду в реальных линиях связи?
- 13. Что такое коэффициент поляризации оптического излучения?
- 14. Дайте определение лазерного диода (ЛД). Какова роль обратной связи для работы ЛД?
- 15. Что такое резонатор Фабри Перо и какую функцию он выполняет в ЛД?
- 16. Что такое ЛД с двойной гетероструктурой (ДГС)? Каковы его преимущества перед традиционными ЛД?
- 17. Дайте определение угловой расходимости излучения ЛД.
- 18. Основные характеристики волоконного световода, перечислить и привести формулы.
- 19. Используя законы геометрической оптики, проведите качественный анализ процесса распространения волн по оптическому световоду.
- 20. Какова роль полного внутреннего отражения при распространении света в волокне и планарной волноводной структуре?
- 21. Спекл-структура (картина) на торце световода, условия её возникновения, связь с интерференцией.

10. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ

Форма А стр. 7 из 12

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

По данной дисциплине организуется и проводится внеаудиторная самостоятельная работа.

Самостоятельная работа студентов, предусмотренная учебным планом в объеме не менее 50-70% общего количества часов, должна соответствовать более глубокому усвоению изучаемого курса, формировать навыки исследовательской работы и ориентировать студентов на умение применять теоретические знания на практике.

Самостоятельная работа по данной дисциплине состоит из следующих частей:

- подготовка к лабораторным занятиям;
- подготовка к зачету и экзамену.

При подготовке к лабораторным занятиям и контрольным мероприятиям рекомендуется руководствоваться учебниками и учебными пособиями, в том числе и информацией, полученной в сети Интернет.

Студентам рекомендуется следующий порядок организации самостоятельной работы над темами и подготовки к практическим занятиям:

- ознакомиться с содержанием темы;
- прочитать материал лекций, при этом нужно составить себе общее представление об излагаемых вопросах;
- прочитать параграфы учебника, относящиеся к данной теме;
- перейти к тщательному изучению материала, усвоить теоретические положения и выводы, при этом нужно записывать основные положения темы (формулировки, определения, термины, воспроизводить отдельные схемы и чертежи из учебника и конспекта лекций);

Результаты самостоятельной работы контролируются преподавателем и учитываются при аттестации студента (зачет и экзамен).

Название разделов и тем	Вид самостоятельной работы	Объем в часах	Форма контроля
1. Ватт-амперные характеристики лазерного и	Отчеты по лабораторным работам, вопросы к зачету,	16	Отчет по лабораторным
светоизлучающего диодов	вопросы к экзамену		работам,
			зачет, экзамен
2. Поляризационные	Отчеты по лабораторным	16	Отчет по
характеристики лазерного и светоизлучающего диодов	работам, вопросы к зачету, вопросы к экзамену		лабораторным работам,
			зачет,
3. Анализ модовой	Отчеты по лабораторным	16	экзамен Отчет по
структуры волоконных	работам, вопросы к зачету,		лабораторным
световодов	вопросы к экзамену		работам,
			зачет, экзамен
4. Исследование степени	Отчеты по лабораторным	16	Отчет по
когерентности лазерного	работам, вопросы к зачету,		лабораторным
диода	вопросы к экзамену		работам, зачет,
			экзамен
5. Экспериментальное	Отчеты по лабораторным	16	Отчет по
определение числовой	работам, вопросы к зачету,		лабораторным
апертуры волоконных	вопросы к экзамену		работам,
световодов			зачет,

Форма А стр. 8 из 12

		1	
			экзамен
6. Затухание в оптических	Отчеты по лабораторным	16	Отчет по
световодах при их стыковке	работам, вопросы к зачету,		лабораторным
	вопросы к экзамену		работам,
			зачет,
			экзамен
7. Затухания в оптических	Отчеты по лабораторным	16	Отчет по
розетках и аттенюаторах при	работам, вопросы к зачету,		лабораторным
соединении волоконных	вопросы к экзамену		работам,
световодов	_		зачет,
			экзамен
8. Измерения оптических и	Отчеты по лабораторным	16	Отчет по
электрических характеристик	работам, вопросы к зачету,		лабораторным
лазерного диода и	вопросы к экзамену		работам,
фотоприемника			зачет,
1 1			экзамен
9. Импульсная модуляция	Отчеты по лабораторным	10	Отчет по
лазерного диода	работам, вопросы к зачету,		лабораторным
1 // //	вопросы к экзамену		работам,
	Transfer and the second		зачет,
			экзамен
10. Моделирование формы	Отчеты по лабораторным	10	Отчет по
сигнала на приемном конце	работам, вопросы к зачету,		лабораторным
реальной оптической линии	вопросы к экзамену		работам,
СВЯЗИ			зачет,
CBASII			экзамен
11. Аналоговая модуляция	Отчеты по лабораторным	10	Отчет по
лазерного диода	работам, вопросы к зачету,		лабораторным
лазерного диода	вопросы к экзамену		работам,
	Bonpoesi k sksuweny		зачет,
			экзамен
12. Исследование потерь на	Отчеты по лабораторным	8	Отчет по
изгибах оптоволокон с	работам, вопросы к зачету,		лабораторным
помощью скремблера	вопросы к экзамену		работам,
помощью скремолера	вопросы к экзамену		раоотам, зачет,
			,
			экзамен

11. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

а) Список рекомендуемой литературы

основная

- 1. Цаплин, А. И. Методы измерений в волоконной оптике : учебное пособие / А. И. Цаплин, М. Е. Лихачев ; под общей редакцией А. И. Цаплина. Пермь : ПНИПУ, 2011. 227 с. ISBN 978-5-398-00727-5. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/160734
- 2. Бородина, Е. Г. Основы квантовой электроники : учебное пособие / Е. Г. Бородина, В. В. Лентовский. Санкт-Петербург : БГТУ "Военмех" им. Д.Ф. Устинова, 2017. 160 с. ISBN

Форма А стр. 9 из 12

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

978-5-906920-89-8. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/121835

дополнительная:

- 1. Рябочкина, П. А. Лабораторный практикум по физике лазеров / П. А. Рябочкина, А. А. Ляпин. 2-е изд., доп. Саранск : МГУ им. Н.П. Огарева, 2020. 96 с. ISBN 978-5-7103-4095-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/204737
- 2.Волоконно-оптические измерительные системы для исследования сред и процессов : учебное пособие / Е. И. Андреева, Б. К. Никитин, Е. В. Полякова, А. Н. Сергеев. Санкт-Петербург : СПбГУТ им. М.А. Бонч-Бруевича, 2022. 72 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/279374
- 3. Рябцев, И. И. Физика лазеров : учеб. пособие. 2-е изд. / Рябцев И. И. Москва : Новосибирск : РИЦ НГУ, 2016. 80 с. ISBN 978-5-4437-0483-8. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785443704838.html

учебно-методическая:

- 1. Учебно-методическое пособие по дисциплине «Специальный физический практикум» для студентов магистратуры по направлению 03.04.02 «Физика», очная форма обучения. Санников Д.Г. Ульяновск: УлГУ, 2019. Режим доступа: http://lib.ulsu.ru/MegaPro/Download/MObject/7132.
- 2. Санников Д. Г. Методические указания для самостоятельной работы по дисциплине «Специальный физический практикум» для студентов магистратуры по направлению 03.04.02 «Физика» очной формы обучения / Д. Г. Санников; УлГУ, ИФФВТ, Каф. радиофизики и электроники. 2020. Загл. с экрана; Неопубликованный ресурс. Электрон. текстовые дан. (1 файл: 216 КБ). Режим доступа: http://lib.ulsu.ru/MegaPro/Download/MObject/6604.

б) Программное обеспечение_____

Лицензионные математические пакеты: Maple, пакет программ Мой Офис Стандартный, ОС Альт Рабочая станция 8.

в) Профессиональные базы данных, информационно-справочные системы

1. Электронно-библиотечные системы:

- 1.1. Цифровой образовательный ресурс IPRsmart : электронно-библиотечная система : сайт / ООО Компания «Ай Пи Ар Медиа». Саратов, [2023]. URL: http://www.iprbookshop.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.2. Образовательная платформа ЮРАЙТ : образовательный ресурс, электронная библиотека : сайт / ООО Электронное издательство «ЮРАЙТ». Москва, [2023]. URL: https://urait.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.3. База данных «Электронная библиотека технического ВУЗа (ЭБС «Консультант студента»): электронно-библиотечная система: сайт / ООО «Политехресурс». Москва, [2023]. URL: https://www.studentlibrary.ru/cgi-bin/mb4x. Режим доступа: для зарегистрир.

Форма А стр. 10 из 12

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

пользователей. – Текст: электронный.

- 1.4. Консультант врача. Электронная медицинская библиотека: база данных: сайт / ООО «Высшая школа организации и управления здравоохранением-Комплексный медицинский консалтинг». Москва, [2023]. URL: https://www.rosmedlib.ru. Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 1.5. Большая медицинская библиотека: электронно-библиотечная система: сайт / ООО «Букап». Томск, [2023]. URL: https://www.books-up.ru/ru/library/. Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 1.6. ЭБС Лань : электронно-библиотечная система : сайт / ООО ЭБС «Лань». Санкт-Петербург, [2023]. URL: https://e.lanbook.com. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.7. ЭБС Znanium.com : электронно-библиотечная система : сайт / ООО «Знаниум». Москва, [2023]. URL: http://znanium.com . Режим доступа : для зарегистрир. пользователей. Текст : электронный.
- **2. КонсультантПлюс** [Электронный ресурс]: справочная правовая система. / ООО «Консультант Плюс» Электрон. дан. Москва : КонсультантПлюс, [2023].
 - 3. Базы данных периодических изданий:
- 3.1. eLIBRARY.RU: научная электронная библиотека : сайт / ООО «Научная Электронная Библиотека». Москва, [2023]. URL: http://elibrary.ru. Режим доступа : для авториз. пользователей. Текст : электронный
- 3.2. Электронная библиотека «Издательского дома «Гребенников» (Grebinnikon) : электронная библиотека / ООО ИД «Гребенников». Москва, [2023]. URL: https://id2.action-media.ru/Personal/Products. Режим доступа : для авториз. пользователей. Текст : электронный.
- **4.** Федеральная государственная информационная система «Национальная электронная библиотека» : электронная библиотека : сайт / ФГБУ РГБ. Москва, [2023]. URL: https://нэб.рф. Режим доступа : для пользователей научной библиотеки. Текст : электронный.
- **5. Российское образование** : федеральный портал / учредитель ФГАУ «ФИЦТО». URL: http://www.edu.ru. Текст : электронный.
- **6.** Электронная библиотечная система УлГУ: модуль «Электронная библиотека» АБИС Мега-ПРО / ООО «Дата Экспресс». URL: http://lib.ulsu.ru/MegaPro/Web. Режим доступа: для пользователей научной библиотеки. Текст: электронный.

Согласовано:

Должность сотрудника УИТиТ

plen NA 2

12. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Аудитории кафедры, укомплектованные необходимым специализированным оборудованием для проведения занятий, текущего контроля и промежуточной аттестации, групповых и индивидуальных консультаций.

13. СПЕЦИАЛЬНЫЕ УСЛОВИЯ ДЛЯ ОБУЧАЮЩИХСЯ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

Форма А стр. 11 из 12

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

В случае необходимости, обучающимся из числа лиц с ограниченными возможностями здоровья (по заявлению обучающегося) могут предлагаться одни из следующих вариантов восприятия информации с учетом их индивидуальных психофизических особенностей:

- ^{вы} для лиц с нарушениями зрения: в печатной форме увеличенным шрифтом; в форме электронного документа; в форме аудиофайла (перевод учебных материалов в аудиоформат); в печатной форме на языке Брайля; индивидуальные консультации с привлечением тифлосурдопереводчика; индивидуальные задания и консультации;
- ¹¹¹ для лиц с нарушениями слуха: в печатной форме; в форме электронного документа; видеоматериалы с субтитрами; индивидуальные консультации с привлечением сурдопереводчика; индивидуальные задания и консультации;
- ^{вы} для лиц с нарушениями опорно-двигательного аппарата: в печатной форме; в форме электронного документа; в форме аудиофайла; индивидуальные задания и консультации.

В случае необходимости использования в учебном процессе частично/исключительно дистанционных образовательных технологий, организация работы ППС с обучающимися с ОВЗ и инвалидами предусматривается в электронной информационнообразовательной среде с учетом их индивидуальных психофизических особенностей.

Разработчик

_ профессор кафедры РФЭ Санников Д.Г.

получность ФИО

Форма А стр. 12 из 12